
2" ' '%.

Rapid Near-Optimal Aerospace Plane
Trajectory Generation and Guidance

Final Report

November, 1991

Reporting Period: 12/1/88 - 8/31/91

Research Supported by the NASA Langley Research Center

NASA Grant Number: NAG-I-922

Principal Investigators: A.J. Calise

Research Assistants: J.E. Corban and N. Markopoulos

NASA Contract Monitor: D. D. Moerder

School of Aerospace Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332

(NASA-CR-189469) RAPID NEAR-OPTIMAL

AEROSPACE PLANE TRAJECTORY GENERATION ANO

GUIDANCE Final Report, 1 Dec. 1988 - 31 Aug.

1991 (Georgia Inst. of Tech.) 38 pCSCL 01C

G3108

N92-14066

Unclas

0053074



Table of Contents

I. Summary from previous reporting periods ...................................... 1

II. Progress this reporting period .............................................. ...... 4

References ........................................................................... 6

Appendix ............................................................................. 8

List of Figures

1. Energy climb paths for an F-8 aircraft. 29

2. Evaluation of 8(E) for an F-8 aircraft. 30

3. Energy climb paths for an F-15 aircraft. 31

4. Evaluation of E(E) for an F-15 aircraft. 32

5. Energy climb paths for a short haul transport aircraft. 33

6. Evaluation of E(E) for a short haul transport aircraft. 34

7. Energy climb paths for a generic hypersonic vehicle 35

8. Evaluation of E(E) for a generic hypersonic vehicle 36

List of Tables

Table £a_

1 Estimation of EUB based on Eq. (32) 17



I. Summary from previous reporiing periods

This is the final progress report covering the complete period from December 1, 1988 to
August 31, 1991, funded under the NASA Contract NAG-1_-922. The research effort was
directed toward the problems of real-time trajectory optimization and guidance law
development for National Aerospace Plane applications. In particular, singular perturbation
methods were used to develop guidance algorithms suitable for on board, real-time
implementation.

The bulk of the work completed during the period is summarized in three previous

reports, listed as references [1]-[3]. Reference [4] cites the final progress report from the
previous project (funded under the NASA Contract NAG-I-784).

The work completed during the period from December 1, 1988 to June 30, 1989 (See

Ref. [1]) consisted primarily of extensions to the analysis reported in reference [4] to
include a number of important considerations, in particular, the vehicle model was

extended to include angle of attack effects, the thrust vector component normal to the
velocity vector, and flight in the subsonic and supersonic regimes. A multi-mode
propulsion system consisting of turbojet, ramjet, scramjet and rocket engines was assumed
and simple models for thrust generation and fuel consumption were adopted for each
engine cycle. The state-space was further constrained by considering a maximum allowable
heating rate. Singular perturbation methods were applied to this more realistic model,

leading to a simple algorithm suitable for generating a nearly-fue!-optimal altitude profile in
real time. A simple iterative algorithm was derived that approximates the optimal engine
transition points and the regions of cycle overlap. Feedback linearization was employed to
derive an angle of attack controller which can be used to guide the vehicle along the nearly-
fuel-optimal altitude profile in simulations of flight within the atmosphere. A computer
subroutine based on the space shuttle explicit guidance algorithm was written to handle the
exoatmospheric phase of ascent guidance which allows for the simulation of insertion into
orbit. The resulting software was employed to examine the influence of the added model
complexity on the fuel-optimal ascent trajectories and the performance of the guidance
algorithms_

During the second reporting period, up to December 31, 1989 (See Ref. [2]) general
problems associated with on-board trajectory optimization, propulsion system cycle
selection, and with the synthesis of guidance laws were addressed for ascent to low-Earth-
orbit of an air-breathing, single-stage-to-orbit vehicle. The work built directly upon the
analytical results of reference [1]. A good portion of the work focused on making
improvements to the vehicle models employed. The NASA "Generic Hypersonic
Aerodynamic Model Example" and the "Langley Accelerator" aerodynamic data sets were
acquired and implemented. Work pertaining to the development of purely analytic
aerodynamic models also continued at a low level. A generic model of a multi-mode

propulsion system was developed that includes turbojet, ramjet, scramjet, androcket engine
cycles. Provisions were made in the dynamic model for a component of thrust normal to
the flight path. Computational results, which characterize the nonlinear sensitivity of
scramjet performance to changes in vehicle angle of attack, were obtained and incorporated
into the engine model. Additional trajectory constraints were also introduced. The
constraints treated were: maximum dynamic pressure, maximum aerodynamic heating rate
per unit area, angle of attack and lift limits, and limits on acceleration both along and
normal to the flight path.

The remainder of the research effort during the second period focused, for the most part,
on required modifications to the previously derived algorithm when the model complexity



cited abovewas added. In particular, analytic switching conditions were derived which,
under appropriate assumptions, govern optimal transition from one propulsion mode to
another for two cases: the case in which engine cycle operations can overlap, and the case

in which engine cycle operations are mutually exclusive. The resulting guidance algorithm
was implemented in software and exercised extensively. It was found that the
approximations associated with the assumed time scale separation employed in this work
are reasonable except over the Mach range from roughly 5 to 8. This phenomenon is due to
the very large thrust capability of scramjets in this Mach regime when sized to meet the
requirement for ascent to orbit. Very little mass penalty is induced by the resulting
inaccuracies in the trajectory over this region because it is traversed rapidly. However, the
reduced solution climb paths prove to be unfeasible within this Mach range when subject to
the full model dynamics and active trajectory constraints. These difficulties were
successfully overcome by accounting for flight path angle and flight path angle rate in
construction of the flight path over this Mach range. The resulting algorithm provides the

means for rapid near-optimal trajectory generation and propulsion cycle selection over the
entire Mach range from take-off to orbit given a realistic nonlinear vehicle model and all

pertinent trajectory constraints.

A significant problem area encountered was the lack of a general theory for singularly
perturbed systems that are subject to state-variable inequality constraints (Ref. [2]). Such
constraints are common to a wide class of flight vehicles but have received little attention in
the literature when the dynamic system is singularly perturbed. A study was initiated in this
area and it was found that, when the reduced solution lies on a state-variable inequality

constraint boundary, the boundary layer trajectories are of finite time in the stretched time
scale. The possibility of costate discontinuities at the juncture between constrained and
unconstrained arcs makes direct application of existing theory difficult at best. A
transformation technique was identified that eliminates some of these difficulties, but at the
cost of possibly increased system order and the introduction of singular arcs. Much work
remains to be done in this area.

Work on the development of simple, efficient algorithms for prediction of vehicle
aerodynamic and propulsive performance continued during the second phase of the
program (Ref. [2]). Improvements in the modeling of the hypersonic lifting body module
eliminated previous discrepancies between measured and predicted aerodynamic behavior.
Several modes of data entry can now be implemented making assessment of a given vehicle
configuration very simple. An interactive program mode was devised that makes possible
direct and immediate assessment of configuration changes on selected vehicle performance

parameters. The algorithms developed in this program are of potential use in applications
beyond those originally envisioned.

The first two reporting periods resulted in four conference papers .(Ref. [5]-[8]) which
discuss most of the results of this research effort.. A Ph.D. Dissertauon that details the

entire effort to date was published in December of 1989 (Ref. [9]). A full-length paper
entitled Rapid Near-Optimal Trajectory Generation for Single-Stage-to-Orbit Airbreathing
Vehicles has also been submitted and accepted for publication in the AIAA Journal of
Guidance, Control and Dynamics (Ref. [10]).

There was a funding lag for the period from January to May of 1990 during which no
research was conducted. Funding resumed on the first of May.

During the next reporting period, from May 1 to October 31, 1990 efforts were primarily
focused upon developing a general understanding of singularly perturbed systems subject
to state-variable inequality constraints and also upon developing criteria for the applicability

of singular perturbation techniques to flight mechanics problems and in particular to aircraft



energyclimbs (Ref. [3]). As noted in reference [2], singularly perturbed optimal control
problems with state-variable inequality constraints can exhibit complex boundary layer

phenomena. In particular, the boundary !ayer transitions associated with such problems
can be of finite time when the state constraint is first encountered at the end of the boundary

layer transition. The lack of a general theory for treating such systems was identified as a
significant research problem.

A cursory look at the problem was completed prior to the submission of the 1989 final
report (Ref. [2]). Since that time, considerable progress was made. The results of the
effort are detailed in a technical paper that was first presented at the 1990 AIAA GN&C
Conference (Ref. [11]). A revision of the paper has also been accepted for publication in

the AIAA Journal of Guidance, Dynamics and Control. The results are summarized as
follows.

The established necessary conditions for optimality in nonlinear control problems that
involve state-variable inequality constraints were applied to a class of singularly perturbed

systems. The distinguishing feature of this class of two-time-scale systems is a
transformation of the state-variable inequality constraint, present in the full order problem,
to a constraint involving states and controls in the reduced problem. The existence of a
nonsingular control solution was assumed. It was of particular interest to construct the
zeroth order initial boundary layer solution, or at least and approximation to it, when the
reduced solution lies on a state constrain boundary. In the absence of a state constraint,

one can take advantage of the fact that the reduced solution serves as an equilibrium point
for the boundary layer system. However, it was shown that, when a state constraint is
active in the reduced problem, the boundary layer problem can be of f'mite time in the
stretched time variable. Thus, the usual requirement for asymptotic stability of the

boundary layer system is not applicable, and can not be used to construct approximate
boundary layer solutions. Furthermore, an active state constraint introduced the possibility
of discontinuous costate variables at the juncture between constrained and unconstrained
arCS.

Various means for treating such problems were investigated. A simple linear example
was constructed and used to show that a Valentine transformation can be used to regain
smoothness, but with limited advantage. That is, Valentine's transformation can be used to

avoid the problems associated with discontinuous costate time histories, but at the expense
of introducing a singular arc and discontinuities in the transformed control variable. A
second linear example was used to illustrate the exact analytic solution of a simple
singularly perturbed problem involving a state variable inequality constraint. The solution
includes a "fast" costate discontinuity and a finite-time initial boundary layer transition. A
third, but nonlinear, example for which the boundary layer system could not be solved
analytically was then constructed. This example was used to illustrate a general feedback
strategy that was developed for synthesizing a near-optimal boundary layer transition onto a
constrained are. In this technique, the costate jumps that can occur and the boundary layer
final time are used as free parameters in order to satisfy continuity conditions in the state
variables at the end of the boundary layer response. The resulting approximation was
compared directly with the numerically generated optimal solution. The method proved
quite satisfactory when used to construct an approximate solution for this relatively simple
nonlinear example, at least for small perturbations away from the reduced solution.

Several problems requiring further attention were identified. For instance, numerical
problems were sometimes encountered in the solution process for Example 3 (See Ref.
[11]) as time-to-go approached zero (i.e. as the boundary layer transition nears
completion). This difficulty did not prevent the generation of an accurate approximation of
the optimal solution for the example problem, and further manipulation of Example 3 has



leadto acompletelyanalyticcharacterizationof the solution.However,thepossibility of
approachinga singularity shouldbe investigatedin a genericsetting.The approximation
techniquebeingemployeddependsuponalinearizationof theboundarylayersystemabout
a non equilibrium point. It doesnot appearpossibleto characterizethe stability of the
approximationfor a givensetof initial conditions. And though guidance along a constraint
boundary will likely be subject to small perturbations only, linearization does introduce the
likelihood of control saturation for sufficiently large perturbations. A multiple time scale
approach, in which altitude and flight path angle dynamics are examined on separate time
scales, could eliminate this dependence on linearization. There is also a question of
applicability when atmospheric disturbances lead to a constraint violation.

II. Progress this reporting period

During the last reporting period, from November 1, 1990 to August 31, 1991 efforts
were again focused upon developing a general understanding of singularly perturbed
systems subject to state-variable inequality constraints and also upon developing more
stringent criteria for the applicability of singular perturbation techniques to flight mechanics
problems and in particular to aircraft energy climbs. Specifically, a systematic approach
was devised for naturally identifying the perturbation parameter ¢ in a singular perturbation
analysis of aircraft optimal guidance and expressing it in terms of original physical problem
parameters. The approach, which is based on a nondimensionalization of the equations of
motion, can be used to evaluate the appropriateness of forced singular perturbation
formulations used in the past for transport and fighter aircraft, and to assess the

applicability of energy state approximations and singular, perturbation analyses for
airbreathing transatmospheric vehicles with hypersonic cruise and orbital capabilities.
Furthermore, the approach can easily be extended to asses the possibility of treating the
same problems by assuming multiple (more than two) time scale behavior.

The lack of strict criteria for the applicability of singular perturbation techniques to flight
mechanics problems served as an incentive for our efforts during the last reporting period.
The methods of matched asymptotic analysis in singular perturbation theory are based on

the presence of small parameters in the differential equations of motion which give rise to
multiple time scale behavior. It has been noted by numerous authors (Ref. [13],[14]) that,
in spite of a wide number of papers attesting to the applicability of singular perturbation
methods to optimization problems in aircraft flight mechanics, few have been successful in
first casting the equations of motion in a singular perturbation form. A few notable

exceptions are Refs. [13]-[16]. In Ref. [13] two methods for time scale separation analysis
are proposed to identify the proper assignment of state variables to various time scales.
These methods are based on forming an estimate of the state variable speeds. In Ref. [14] a
rescaling to nondimensional variables is recommended. However, it is noted that the proper

scaling transformation is not obvious, even if the time scale separation of the variables is
well known from analysis or experience. Both of these papers (and in particular Ref. [13])

provide extensive references to earlier studies which employ so-called forced singular
perturbation formulations, in which the perturbation parameter (say e), nominally equal to
1, is artificially introduced as a book keeping parameter in a formal expansion of the

solution about e = 0. In particular, there exists a large number of publications on the
optimization of aircraft energy climbs (see for example Refs. [17]-[20]), none of which
make any attempt to identify an appropriate perturbation parameter in terms of the original
problem parameters. This is particularly disturbing considering the number of years that
have passed since such analysis techniques were first introduced in the flight mechanics
literature. In any singular perturbation analysis, every attempt should be made to identify
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theperturbationparameterin termsof theoriginal problemparameters(which in general
includetheboundaryconditions)sothatthephysicalprocessthatgivesriseto thetwo time
scalebehavioris clearly understood.Then, therangeof parametervaluesfor which the
perturbationanalysisis valid canbeeasilyidentified.Knowledgeof timescaleseparability
presentin the systemdynamics,and successin exploiting this characteristicto obtain
approximatesolutions,is not, in itself justification for artificially introducinge.That is,
within theframeworkof oursystemof logic it is alwayspossibleto haveconclusionsthat
aretrue, which follow from assumptions that are wrong.

Our work has partially rectified this situation by presenting a systematic (albeit still ad-

hoc) approach to nondimensionalize variables in nonlinear optimization problems in flight
mechanics. Most of the considerations that were presented apply in other fields as well.
Our main motivation for collecting and stating these considerations was to define the

thought process by which it is possible to arrive at a suitable scaling of the aircraft energy
climb problem. Of particular interest was the assessment of the applicability of energy state

approximations and singular perturbation analyses for airbreathing transatmospheric
vehicles with hypersonic crmse and orbital capabilities.

The major result of our effort was the demonstration that for energy climbs that take
place on a vertical plane the singular perturbation parameter e is always equal to the
maximum longitudinal loading factor of the vehicle. Two time scale behavior is suggested
according to whether e is less than one or not. Based on this result it is straightforward to
see why singular perturbation methods applied to aircraft performance optimization have
worked so well in the past. The maximum longitudinal loading factors associated with the
majority of conventional aircraft are either less than one because the aircraft lack very high
thrusting capabilities, or because they are restricted to be so for other reasons (structural,
comforting, etc.). A few notable exceptions do occur for some modern fighters. This
directly suggests that most conventional aircraft can be expected to exhibit two-time-scale
behavior for almost any energy climb that they are allowed to perform. This then appears to
be the reason for the past success of so many singular perturbation treatments of aircraft
energy climbs. The implication for transatmospheric vehicles is rather direct. If we consider
such a vehicle as a passenger transport, then, in order to assure passenger comfort it is only
natural to impose as a constraint a maximum longitudinal loading factor for the vehicle that
is less than one. Our work suggests that such a constraint would imply two-time-scale

behavior for any type of energy climb that such a vehicle would be allowed to perform.
Therefore, singular perturbation formulations of such maneuvers still appear to be
promising, even with all the added complexities that the flight regimes of such vehicles can
involve. A paper which reports on our progress has been presented at the 1991 AIAA
GN&C Conference. A copy of the paper is included as an Appendix.
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Abstract

This paper proposes a systematic approach for identifying the perturbation parameter in singular

perturbation analysis of aircraft optimal guidance, and in particular considers a family of problems

related to aircraft energy climbs. It is first shown that for energy climbs that take place on a vertical plane

the singular perturbation parameter can always be taken to be the maximum allowed longitudinal loading

factor of the vehicle. Two time scale behavior is suggested according to whether this parameter is

sufficiently less than one. The approach, which is based on a nondimensionalization of the equations of

motion, is then used to evaluate the appropriateness of forced singular perturbation formulations used in

the past for transport and fighter aircraft, and to assess the applicability of energy state approximations

and singular perturbation analysis for airbreathing transatmospheric vehicles with hypersonic cruise and

orbital capabilities.

Introduction

The methods of matched asymptotic analysis in singular perturbation theory are based on the

presence of small parameters in the differential equations of motion which give rise to multiple time scale

behavior. It has been noted by several authors 1.2 that, in spite of a wide number of papers attesting to the

applicability of singular perturbation methods to optimization problems in aircraft flight mechanics, few

have been successful in first casting the equations of motion in a singular perturbation form. A few

notable exceptions are Refs. 1-4. In Ref. 1 two methods for time scale separation analysis are proposed

to identify the proper assignment of state variables to various time scales. These methods are based on

forming an estimate of the state variable speeds. In Ref. 2 a rescaling to nondimensional variables is

recommended. However, it is noted that the proper scaling transformation is not obvious, even if the

time scale separation of the variables is well known from analysis or experience. Both of these papers

(and in particular Ref. 1) provide extensive references to earlier studies which employ so-caUed forced

singular perturbation formulations, in which the perturbation parameter (say e), nominally equal to 1, is

artificially introduced as a book keeping parameter in a formal expansion of the solution about e = 0. In

particular, there exists a large number of publications on the optimization of aircraft energy climbs (see
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for exampleReferences5-8),noneof whichmakeanyattemptto identify anappropriateperturbation

parameterin termsof the original problemparameters.This is particularly disturbingconsideringthe

numberof yearsthat havepassedsincesuchanalysistechniqueswere first introducedin the flight

mechanicsliterature.In anysingularperturbationanalysis,everyattemptshouldbemadeto identify the

perturbationparameterin terms of the original problem parameters(which in generalinclude the

boundaryconditions)sothatthephysicalprocessthatgivesriseto thetwo time scalebehavioris clearly

understood.Then, the rangeof parametervaluesfor which theperturbationanalysisis valid can be

easilyidentified.Knowledgeof time scaleseparabilitypresentin thesystemdynamics,andsuccessin

exploitingthischaracteristicto obtainapproximatesolutions,isnot, in itself justification for artificially

introducing e. That is, within the framework of our systemof logic it is alwayspossible to have

conclusionsthataretrue, which follow from assumptions that are wrong.

In this note we attempt to partially rectify this situation by presenting a systematic (albeit still ad-

hoc) approach to nondimensionalize variables in nonlinear optimization problems in flight mechanics.

Most of the considerations that are presented apply in other fields as well. Our main motivation for

collecting and stating these considerations is to define the thought process by which it is possible to

arrive at a suitable scaling of the aircraft energy climb problem. Of particular interest is an assessment of

the applicability of energy state approximations and singular perturbation analysis for airbreathing

transatmospheric vehicles with hypersonic cruise and orbital capabilities.

Subsonic-Supersonic Regimes, Flat Earth Approximation

Consider atmospheric flight of a conventional aircraft, viewed as a point mass, in a vertical plane

over a flat Earth. The equations governing such flight can be reduced to a three-state model in: mass

specific energy E, flight path angle ?, and altitude h. The vehicle mass, m, is assumed to be constant.

The equationsare:

dE V(T- D)

d-i- = m (1)

dy cos y)v (2)

11



dh = V sin_, (3)dt

whereL, D andgdenotethelift, thedragandthe(constant)gravitationalacceleration.It is assumedthat

theatmosphereis stationary,andthatthethrust,T, is directedalongtheflight path.Thespecificenergy

(mechanicalenergyperunitmassof thevehicle)E andthespeedV arerelatedby

V2
E = T + g h (4)

and E rather than V has been employed as a state variable.

In many of the earlier singular perturbation studies the traditional way of writing down Eqs. (2) and

(3) was:

d7 (L.'__(gc°s')e'd-i- = _.mv j V (5)

edh
= V sin 2, (6)

that is, by artificially introducing a parameter e and then stating that its nominal value was equal to 1.

Since our main purpose in the present paper is to avoid such an artificial introduction at the outset, Eqs.

(5) and (6) will serve only as a guide for the natural introduction of e..

Nondimensional form

The first step is to put Eqs. (1) through (3) in nondimensional form. To this end we define the set S

S -- {t 0, E o, h o, VO, T 0, D o, Lo} (7)

The elements of the set S are at this point arbitrary positive quantities, and the only restriction that we

impose upon them is that:

to has dimensions of time

E 0 has dimensions of energy per unit mass

h 0 has dimensions of lenght

Vo has dimensions of speed

12



T o, D 0, and Lo have dimensions of force

Using the elements of S to def'me the nondimensional quantifies:

E . h . " V

t='_'o ; E=-_--_"0 , h=--ff'_"0 , V=_-_- °

T . D . L= L_L_
T=-_'-_"° , D=_o" ° , L o

(8)

(9)

Eqs. (1) through (3) can be put into the following nondimensional form:

(t0v01dE V(TTo_ DDo)
d--}"= Eom

dY_(L_( L0t0_ (c°s?'_(gto_

dt -tV)t -- oJ-t V J( vo)

dh (V0to IV sin y
ho)

(10)

(11)

(12)

The goal is now to put Eqs. (10) through (12) in the traditional singular perturbation format. We thus

multiply both sides of Eqs. (11) and (12) by (h o / V o to ). This results in:

h o d'_ (L_(L0h0] (cosy'_(gho_

ho
V o to )dt = V sin (14)

Comparing the set of Eqs. (10), (13) and (14) with the set (1), (5) and (6), it is evident that we can make

the two sets similar by imposing the following four conditions on the elements of the set S:

T O = D O (15)

T o t oVo
- 1 (16)

E o m

Loh o

mVo2 - 1 (17)

13



gh o

Vo
_=1

(18)

If we define E as

h 0
e ----_ (19)

V 0 t o

then, Eqs. (10), (13) and (14) assume the form:

dE = V(T- D) (20)
dt

d7 (L-cos 7)ed-i-= V ' (21)

dh
e-_- = V sin 7 (22)

To summarize, it was shown in the present section that it is possible to introduce a parameter e

naturally into the equations of motion (Eqs. (1) - (3)) by first introducing a set of arbitrary positive

quantities S (see Eq. (7)) to scale the variables of interest, and then by imposing four conditions CEqs.

(15) - (18)) on these quantifies so that the resulting nondimensional equations assume the traditional

singular perturbation form (Eqs. (20) - (22)). Note that only one of the arbitrary quantities in S is

uniquely determined at this point. Combining Eqs. (17) and (18) it follows that

L 0 = m g (23)

Specifying a particular nondimensional form

As shown in the previous section, only four conditions are imposed on the seven elements of the

set S in transforming the equations of motion to the traditional singular perturbation format. This means

that we can specify three of the elements of S to fit our convenience and then determine the remaining

four using Eqs. (15)-(18). The first conclusion therefore is that in general the value of e is quite

arbitrary. For example, by choosing h 0 , V 0 and to in two different ways e can be made arbitrarily small

or large. The separability of the time scales on the other hand is a property of the system and not of the

particular nondimensional form of the equations of rfiotion that is chosen. We therefore expect that if the

14



systemdoesindeedhavethis propertyit will exhibit it no matter what the actual value of e is. This is

precisely the reason for the success of so many singular perturbation treatments of the past in which e

was introduced artificially and its nominal value was said to be fixed at one.

Although there is no unique way of specifying a particular nondimensional form of the equations of

motion, we will now argue that there is one that results in additional physical insight. First, in order to

maintain the relationship in Eq. (4) in the transformed variables, afifth condition is introduced

E 0 = g h 0 (24)

which together with Eq. (18) gives

V 2

E= T + h (25)

Using Eqs. (16) and (24) in Eq. (19) it follows that

%
e-mg (26)

It is now evident that only two among the seven elements of the set S need to be specified. Then, the

five conditions, Eqs. (15) - (18) and (24), uniquely determine the remaining elements.

Eq. (26) implies that e depends only on T O and is independent of the value of the remaining

elements of S. The question therefore arises naturally as to whether there is a particular choice of T O for

which the resulting value of e can be used as a strict criterion for the applicability of a singular

perturbation analysis to Eqs. (20)-(22). The answer to this question is negative because, in a given time

interval, it is the relative magnitudes of the three quantifies

dE dy dh

dt' dr' dt

and the boundary conditions of interest that determine the validity of a singular perturbation analysis.

Specifically, for an aircraft to exhibit the well-known two-time-scale behavior in a given time interval, it

is necessary that:

dE dy

_- ( ( _- (27)
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dE dh
d--i-( ( d--i" (28)

in that interval, and that the required change iil E is sufficiently large to permit the boundary layer

responses in h and y to reach their equilibrium values. Hence, the very question is whether or not the net

change in E during the boundary layer response is sufficiently small to permit approximating E as a

constant (to zero order in ¢) in the boundary layer analysis. In addition, we are interested in knowing if

this two-time-scale property is a consequence of the inherent dynamics of the aircraft, and not a

consequence of using a high gain control solution for L Therefore, we assume that the L resulting from

the boundary layer analysis is of order one in Eq. (21).

Under the above assumptions, there is a choice for TO for which the value of e can be used as a

measure for the existence of time intervals in which two-time-scale behavior is exhibited. If the choice

of T Ois such that dl:/dt is at most of the same order of magnitude as ecl_,/dtand edh/dt, then, a value of

e sufficiently less than one indicates the possible existence of such intervals. By suitably choosing V 0 we

can restrict V to be of order one. Then, for the choice

TO -- (T- D)max (29)

dE/dt is of order one, and both dy/dI and dh/dt are of order 1/e. For this choice of To , s is given by

(T - D)max

e = m g (30)

and is equal to the maximum longitudinal loading factor of the vehicle.

Note that Eq. (30) actually represents an upper bound for e since it is obtained by selecting the

flight condition where the difference between thrust and drag, T-D, reaches a maximum. The logical

choice for V 0 is the speed at this flight condition. One can also adopt the viewpoint of evaluating e along

the energy climb path that results from a reduced solution. The value of ¢ as a function of E can then be

used as a measure to distinguish energy levels where a singular perturbation analysis may be appropriate

from other levels where it may not be valid.

It is interesting to note that a good deal can be anticipated from Eq. (30) for conventional aircraft

without exact numerical evaluation: (T-D)max divided by mg is approximately equal to sin3'max where

16



Ymaxis the maximum climb angle that can be maintained at a given energy level without loss of airspeed.

It follows therefore that e<l for all such aircraft types. For transport aircraft sinYmax is approximately

0.1, while for fighter aircraft sinYmax is approximately 0.8. This suggests that the forced singular

perturbation analysis used in the past studies of optimal aircraft trajectories is .valid for most conventional

subsonic and supersonic aircraft.

Eq. (30) can also be used to estimate _ in terms of the quantifies (T/mg)ma x and (L/D)ma x for a given

aircraft. Since L is less than or equal to mg along the energy climb path, it follows that a second upper

bound for E is given by

where ¢trB is defined as

Estimates of cob

e<eun (31)

eOB -=[(T / mg)

are given in Table 1.

- 1 / (L / D) max] (32)
max

Table 1

Estimation of etrB based on Eq. (32)

Parameter Transports Fighters

(T / mg) 0. 25 0. 90
max

(L/D)ma x 13 -15 4 -7

eUB 0.17-0.18 0.65--0.76

Hypersonic Regime

Consider the flight of a hypersonic and possibly transatmospheric vehicle, viewed as a point mass,

in a vertical plane over a spherical non-rotating Earth. The equations governing such flight can be

reduced to a four-state model in E, m, y and radial distance from the center of the Earth, r. The equations

ale:

dE V(T1T - D)
d--T " m (33)
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dm

d"_" = - f(r, V, ri) (34)

d7 I.tcos y'_ (V cos y
(35)

dr = V sin y (36)dt

where T is the maximum available thrust at a given speed and altitude. The control variables are L and 1"1,

where 0<1"1<1 is introduced as a nondimensional throttling variable. E and V are now related by

V 2 g
E=

2 r (37)

Note again that in earlier singular perturbation studies 9, the traditional way of writing down Eqs.

(35) and (36) was:

d7 ( _t cos 7 cos 7 ))+(v-

e dr = V sin 7
dt

(38)

(39)

that is, by artificially introducing a parameter e and then stating that its nominal value was equal to 1.

Again, in order to avoid this artificial introduction, Eqs. (38) and (39) will serve only as a guide for the

natural introduction of e.

Nondimensional Form

In order to put Eqs. (33) through (36) in nondimensional form we now define the set of arbitrary

positive quantities

S-{t o, EO, mo, r o, V 0, f0' To' Do' Lo} (40)

and impose the restrictions that:

to has dimensions of time

Eo has dimensions of energy per unit mass

rn 0 has dimensions of mass

r0 has dimensions of lenght
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V o has dimensions of speed

fo has dimensions of mass per unit time

T o, D o, and Lo have dimensions of force

Using the elements of S to def'me the nondimensional quantifies:

t . E m . r . V

t=T_ ° , E=_o; m=_ o , r=T_" o , V='_o ° (41)

f---', T= T ," D= D., L=mL (42)
f = fo T o Do Lo

Eqs. (33) through (36) can be put into the following nondimensional form:

d__E V(riTTo- DDo)( toVo '_

dt = m _, E_ ) (43)

dm ( fo t o "_

dt --LEo) f_' v,_) _44_

dY ( t. )( L0t0. )_ (cos Y_( I'tt0 )+ (V
-d-t- - \ mV)LmoVo) L---_r2 )L v---_j

= v sin y

, ( rO,01r -- (45)

(46)

In order to put Eqs. (43) through (46) in the traditional singular perturbation format, we multiply both

sides of Eqs. (45) and (46) by (ro / Vo to ). This results in:

fro ,, ivco .,V0t0)dt -----77.2. t,v,2)tV_ro)÷ )moV o r (47)

(_o __
_)dt V sin Y (48)

Comparing the set of Eqs. (43), (44), (47) and (48) with the set (33), (34), (38) and (39) results in the

following five conditions on the elements of the set S:

To = Do (49)
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Tot0V o

Eom o

fot0

m 0

L oro
-I

moV 

_t
2 -1

Vor o

=1
(50)

(51)

(52)

(53)

By def'ming
r o

Vot o

Eqs. (43), (44), (47) and (48) assume the traditional singular perturbation form:

dE V(rlT" D)

dt m

(54)

(55)

dm. =_ f(r, V, rl) (56)dt

dy (cos y'_+ (Vcos 7]e_- = I-_V ]- [--_r2 ) r (57)

dr

e_- = V sin '_ (58)

Specifying a particular nondimensional form

For the hypersonic case onlyfive conditions on the n/he elements of the set S are needed in order

to put the equations of motion in the traditional singular perturbation format. Thus, we can specify four

of the elements of S to fit our convenience and then determine the remaining five using Eqs. (49) - (53).

Again, in order to maintain the relationship in Eq. (37) in the transformed variables, a sixth

condition is introduced
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which together with Eq. (53) gives

_t (59)
E0- r 0

V 2
E = 1 (60)

2 r

ff we think of r o as a radial distance, then Eq. (53) restricts V o to be the circular orbital speed at ro.

Similarly, Eq. (52) restricts L o to be the centrifugal force that a point mass m o would experience in a

circular orbit at ro. Using Eqs. (50), (53), and (59) we haye

Toro2

¢= l.tm--'-'-_ (61)

Hence, by picking three among the nine elements of the set S arbitrarily, the six conditions Eqs. (49) -

(53), and (59) uniquely determine the remaining elements.

The question arises again as to whether there is a particular choice for these three elements for which

the resulting value of e can be used as a measure for the applicability of a singular perturbation analysis

to Eqs. (55)-(58). The right-hand-side of Eqs. (55) and (58) can be made of the same order of

magnitude by choosing the ratio T O/m 0 as

m 0 m (62)

Choosing r 0 as the sea level radius rSL, r and V are of order one. Also, for these choices of T O/m o and

r0, dE/dt is of order one, and both dy/dt and dr/dt are of order 1/e. By choosing fo as the value of f at

the flight condition where the ratio fliT- D)/m is a maximum, din/dr can also be made of order one.

With the above choices of T O/m o, r0 , and f0

(rs2L l(rlT- D)
e = k--_--)_ " _- max (63)

The right-hand-side of Eq. (63) is the maximum longitudinal loading factor of the vehicle in units of

sea-level g's, and actually represents an upper bound for e since it is obtained by selecting the flight

condition where fliT- D)/m reaches a maximum. One can again adopt the viewpoint of evaluating e along

the energy climb path that results from the reduced solution. The value of e as a function of E can then be
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used as a measure to distinguish energy levels where a singular perturbation analysis may be

appropriate, from other levels where it may not be valid.

A hypersonic flight vehicle employing an airbreathing propulsion system and sized for acceleration

to orbital velocity necessarily employs a multimode propulsion system. An example might include

turbojet, ramjet, scramjet, and rocket modes. Each mode of propulsion can be characterized by a

corresponding _. Current models of this vehicle type exhibit large values of excess thrust at low

hypersonic Mach numbers. In fact, Eq. (63) will produce an E that is greater than one over such flight

phases. Experience with hypersonic vehicle dynamics reported in Ref. 10 indeed suggests that the

assumed time scale separation is not valid in these phases. However, over the majority of the trajectory,

Eq. (63) results in an e that is less than one just as in the Flat Earth, Subsonic-Supersonic case.

Numerical validation

It was shown in the preceding sections that for aircraft energy climbs that take place in a vertical

plane, the singular perturbation parameter e can always be identified as the maximum longitudinal

loading factor of the vehicle, measured in units of sea-level g's. In order to further explore the

implications of this result, numerical evaluations of e will be presented in this section for several types of

vehicles.

The idea that the authors would like to introduce at this point is that in general, for a given aircraft, it

may be sufficient to evaluate an upper bound for e, valid for the entire envelope, in order to get a hint

for the possible two-time-scale behavior of the aircraft in question. If the resulting value of this upper

bound is less than one, then, two-time-scale behavior is implied for any energy climb that the aircraft is

allowed to perform. If however the resulting value of the upper bound turns out to be greater than one,

then no conclusion can be drawn. The way to proceed in this latter case would be to evaluate a less

conservative upper bound for e and apply the same reasoning. As it turns out, the less conservative the

upper bound, the more work one has to perform in order to evaluate it. If all the upper bounds for e,

evaluated for the entire envelope fail to yield any conclusions, the reasonable thing to do next is to

evaluate e as a function of the energy E using all the assumptions made in the evaluation of reduced
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solutionsin aircraftenergyclimbs('_3,L=mg etc.).By evaluatingin thissense,andateachenergylevel

theabsolutemaximumvalueof thelongitudinalloadingfactorweobtainacurveC on theE-Eplane.The

interestingpropertiesof thiscurvearethatfor agivenaircraftit needonly beconstructedonceandthatit

liesaboveall othercurvesthatmaybeevaluatedsimilarly,butalongthereducedsolutionscorresponding

to specific problems. In other words, points on curve C represent upper bounds for e at the

corresponding energy levels. The portions therefore of curve C where e is less than one immediately

show the energy levels where two-time-scale behavior (boundary layer transitions along constant E) can

be expected. If there are any portions of curve C where E is greater than one, then no conclusions can be

drawn as to the possible two-time-scale behavior at the corresponding energy levels. In the latter case

one has again to evaluate a less conservative upper bound for E at these energy levels. Such less and less

conservative upper bounds would of course eventually lead to the maximum value of the longitudinal

loading factor evaluated as a function of E along the reduced solution corresponding to a specific

problem.

It should be clear now that if we are interested in the possible two-time-scale behavior of a vehicle

along a particular trajectory (corresponding to a specific problem) then the least conservative upper

bound for _ would be the maximum longitudinal loading factor encountered along that (exact) trajectory.

Calculating this upper bound would not be very useful since it would require the actual computation of

the trajectory first. The idea presented above suggests that there may be a hope of avoiding this by

starting with a more conservative upper bound, and proceeding with less and less conservative upper

bounds.

In order to demonstrate the above ideas in practice, numerical evaluations of e are presented in Figs.

1-8 for four types of vehicles. For each type there is one plot showing the variation of the maximum

longitudinal loading factor of the vehicle with energy E, and one or more plots showing the variation of

the longitudinal loading factor with E along the reduced solution corresponding to a specific optimization

problem.

Figs. 1 and 2 show the results for an F-8 fighter 1°. The two optimization problems considered for

this case were minimum time to a specified energy and minimum time to a specified downrange position.
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The reduced solutions corresponding to these problems are obtained by maximizing (with respect to V)

at each energy level the quantities (T-D)V for the former and [(T-D)V]/(V0-V) for the latter, where V0 is

the maximum possible cruising speed of the aircraft and D is calculated at L=mg. Fig. 1 shows the actual

paths in the envelope corresponding to these reduced solutions and to the maximum longitudinal loading

factor of F-8. Fig. 2 shows the results for e evaluated along these climb paths. Since the maximum

longitudinal loading factor of F-8 stays always below one in Fig. 2, it is reasonable to assume that for a

any optimization problem, if the required energy gain is sufficient, the transitions to the reduced solution

- will take place at nearly constant E, exhibiting the well known boundary layer structure.

Figs. 3 and 4 show similar results for an F-15 fighter 11. The two optimization problems considered

in this ease were again minimum time to a specified energy and minimum time to a specified downrange

position. A maximum dynamic pressure constraint of 1500 lbf per square feet is imposed on the climb

paths for this case. Due to the large thrust to weight ratio of F-15, the e levels in Fig. 4 are much higher

than the ones corresponding to F-8 (compare with Fig. 2). In particular there is a small region at low

energy where e exceeds one, implying that two time scale separation at these energy levels may not be

appropriate for the above two optimization problems.

Figs. 5 and 6 show the results for a conventional transport 12. In this case however, the two

optimization problems considered were minimum fuel to a specified energy and minimum fuel to a

specified downrange position. The reduced solutions corresponding to these problems are obtained by

maximizing (with respect to V and 1"1)at each energy level the quantities [(T-D)V]/f for the former and

[(T-D)V]/(fV0-f0V) for the latter, where V0 is the most fuel efficient cruising speed of the aircraft and f0

is the fuel consumption rate at this cruising flight condition 7. It is interesting to note the very low levels

of e in Fig. 6 (compare with Figs. 2 and 4), suggesting two time scale behavior for the entire envelope.

Finally, Figs. 7 and 8 show the results for a hypersonic vehicle model, used by NASA and called

"the Langley Accelerator ''13. The only optimization problem considered in this case was minimum fuel to

a specified energy, the reduced solution corresponding to which is obtained by maximizing the quantity

[(rlT-D)V]/(mf) at each energy level (mass is not constant in this ease). A maximum dynamic pressure

constraint of 2000 lbf per square feet is imposed on the climb paths for this case. This particular vehicle
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model employs a multimode propulsion system, sized for acceleration to orbital velocity and consisting

of turbojet, ramjet, scramjet, and rocket cycles. Note that Figs. 7 and 8 correspond to a nonoptimal

switching between the different propulsion cycles. Specifically, we first assume allowable operating

ranges for the different propulsion cycles (expressed as bounds on the Mach number), and then, at each

energy level we pick the cycle that maximizes [(rlT-D)V]/(m0 and (riT-D)/m. The switching therefore

from one cycle of propulsion to the other is abrupt, with no overlap. The actual points of cycle

transitions are also shown in the figures. Note also that in Fig. 8 e is plotted against the speeds at which

the constant energy contours intersect the zero altitude axis. The reason for this is that E is negative in

this case. The actual value of e is likely to be much lower if a practical method for cycle transition is

employed° Note finally that as the energy levels get higher and higher we approach the boundary of the

envelope and e goes to zero. This is basically a characteristic of all aircraft (see also Figs. 2, 4, and 6)

suggesting that the transitions to the reduced solution can be treated as boundary layers more succesfully

at high energy levels than at low ones. The physical explanation for this comes from the behavior of the

difference between the thrust T and the drag D..At low energy levels both the speed and altitude are low,

implying that the thrust is high and the drag is low, so that T-D is high and can be used to change the

energy during a transition. At high energy levels on the other hand either the speed or the altitude or both

are high, implying that the difference T-D is low. Thus, transitions to the reduced solution at high energy

levels can be expected to occur more or less by interchanging kinetic for potential energy (or vice versa),

with the total energy staying nearly constant.

Conclusions

For both the conventional (subsonic-supersonic, fiat Earth) and the transatmospheric (hypersonic,

spherical Earth) flight regimes a systematic procedure was introduced to identify naturally a singular

perturbation parameter e in the differential equations of motion. The procedure consists of using a set of

arbitrary scaling constants to nondimensionalize all the variables of interest and then applying a set of

conditions on these constants to put the resulting nondimensional equations of motion in the traditional

singular perturbation format. Because the number of conditions is less than the number of constants, the
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scalingconstantscannotbeuniquelyspecified.Thus,theresultingexpressionfor e is in general quite

arbitrary. There is, however, a particular choice of the scaling constants for which the values of the

resulting e can serve as a hint for a possible two-time-scale behavior of the aircraft in question. The

primary result of the paper is the demonstration that for this "useful" choice of the scaling constants the

resulting e is always equal to the maximum longitudinal loading factor of the vehicle, measured in units

of g's. Two time scale behavior is suggested according to whether E is less than one or not. Based on

this result it is straightforward to see why singular perturbation methods applied to aircraft performance

optimization problems have worked so well in the past. The maximum longitudinal loading factors

associated with the majority of conventional aircraft are either less than one because the aircraft lack very

high thrusting capabilities, or because they are restricted to be so for other reasons (structural,

comforting, etc.). A few notable exceptions do occur for some modern fighters. This directly suggests

that most conventional aircraft can be expected to exhibit two-time-scale behavior for almost any energy

climb that they are allowed to perform. This then appears to be the reason for the past success of so

many singular perturbation treatments of aircraft energy climbs. The implication for transatmospheric

vehicles is rather direct. If we consider such a vehicle as a passenger transport, then, in order to assure

passenger comfort it is only natural to impose as a constraint a maximum longitudinal loading factor for

the vehicle that is less than one. Our work suggests that such a constraint would imply two-time-scale

behavior for any type of energy climb that such a vehicle would be allowed to perform. Therefore,

singular perturbation formulations of such maneuvers still appear to be promising, even with all the

added complexities that the flight regimes of such vehicles can entail.
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